Термостаты или термоголовки для радиаторов отопления
В сегодняшних реалиях недостаточно самого факта обогрева, отопление должно быть комфортным и иметь возможность индивидуальной настройки. В контексте гидравлических систем отопления лучший способ повышения эргономики управления — использование термостатирующей арматуры, которой и посвящен наш обзор.
С одной стороны, практически любой котёл отопления имеет встроенный датчик, отслеживающий температуру теплоносителя. Однако его нельзя считать основным средством регулирования температуры воздуха, так как помещения, отапливаемые жидкостными системами, разнятся по объёму и величине теплопотерь. Таким образом, основная функция системы терморегуляции котла — не допустить перегрева теплоносителя. Кроме того, нельзя забывать о твердотопливных котлах, большинство из которых попросту не способны изменять режимы горения в зависимости от температуры рабочей жидкости.
Чтобы обеспечить комфортную температуру воздуха в обитаемых помещениях, требуется контролировать интенсивность отдачи тепла на самих регуляторах. Для этой цели предусмотрен широкий спектр запорно-регулирующей арматуры, классифицируемой как термоголовки для гидравлических систем отопления. Они отличаются по способу контроля и внутреннему устройству, при этом основной принцип работы понять достаточно просто.
Таким образом, можно выделить два пути, которыми ограничивается передача энергии от теплоносителя воздуху. Первый и самый распространённый — снижение протока теплоносителя в каналах радиатора. Если через радиатор протекает меньший объём рабочей жидкости, соответственно, и количество тепловой энергии, подводимой к нагревательному прибору, будет меньше. На практике это реализуется путём искусственного занижения условного прохода труб в месте подключения радиатора.
Второй способ регулировки заключается в нормировании температуры поступающего теплоносителя, что кажется более логичным, но на практике вызывает дополнительные технические сложности. Единственный способ снизить температуру теплоносителя на подаче — смешать его с частью теплоносителя обратки. Однако это невозможно осуществить при действующей разнице давлений стандартной гидравлической системы. Поэтому такой способ регулировки требует установки узла с расходно-смесительной арматурой и дополнительным циркуляционным насосом, что в действительности актуально не для отдельного радиатора, а целой группы.
Для точной балансировки требуется, чтобы расход теплоносителя в каждом радиаторе оставался неизменным, что невозможно при первом из описанных способов термостатирования. Если используются термоголовки, регулирующие расход, то с некоторыми погрешностями при настройке гидравлической системы придётся попросту мириться. Нужно отметить, что при ограниченном числе радиаторов — порядка 10–12 в одном крыле, влияние изменения протока не сказывается существенно на работе системы в целом.
Однако для контуров большой протяжённости со значительным числом радиаторов такой подход не может применяться. Даже малейшее увеличение протока в нагревательных приборах ближайшей группы вызывает серьёзные сбои, поэтому в таких системах есть два альтернативных выхода из ситуации:
Механический терморегулятор в разрезе
Сборка регулирующей арматуры представлена непосредственно регулировочной головкой и клапаном, на который она воздействует. Термостатирующая головка может использовать температурное расширение рабочего тела, такие устройства называются полуавтоматическими. В качестве рабочего тела может использоваться жидкость, газ или твёрдое тело. Жидкостные и парафиновые термоголовки обладают наибольшим быстродействием, зато газовые характеризуются более продолжительным сроком службы в ущерб высокой скорости реакции.
Радиаторный газоконденсатный терморегулятор: 1 — успокоитель потока; 2 — разъёмное соединение; 3 — шток клапана; 4 — сильфон; 5 — корпус термоголовки; 6 — сальник; 7 — кран-букса; 8 — конус клапана; 9 — корпус клапана
Также управлять степенью нажатия на клапан может электронный блок, в таком случае мы говорим о цифровых термоголовках. Непосредственно нажатие на клапан обеспечивается сервоприводом, соответственно, для работы прибора требуется источник питания. Главное преимущество цифровой арматуры заключается в высокой эргономике: регулировка температуры происходит практически на лету, к тому же есть возможность программирования суточных режимов для установки индивидуальных температурных точек в период сна и отлучки из дома. При этом стоимость цифровых головок в 1,5–2 раза выше полуавтоматических механического действия.
Цифровая термоголовка
В зависимости от типа клапана, на котором установлена термоголовка, действуют различные типы коррекции температуры в помещении. Способ, заключающийся в ограничении протока, реализуется с помощью двухходового клапана, трёхходовой используется при исполнении схемы на расходно-смесительном узле. Практически все виды клапанов рассчитаны на установку термоголовок всех типов, по крайней мере, полная совместимость гарантируется в рамках прейскуранта одного производителя.
Сервопривод электронной термоголовки
Дополнительным отличием является размещение датчика температуры. В одних термоголовках он расположен в корпусе прибора, в других может размещаться удалённо: для цифровых терморегуляторов расстояние выноса практически не ограничено, в то время как для механических устройств удаление способствует меньшему времени отклика и потому датчик, как правило, расположен от устройства термоконтроля не далее 1–1,5 м. Дополнительно отметим, что возможность удалённого расположения температурного датчика существует для арматуры, контролирующей нагрев как воздуха, так и теплоносителя.
Для установки в расходно-смесительный узел используют трёхходовые клапаны. Отводы основного протока при этом врезаются в магистраль подачи в соответствии с направлением движения теплоносителя, при этом вторичный отвод присоединяется к байпасной трубке, на которой установлен циркуляционный насос. Здесь могут использоваться всё те же виды термоголовок, что и для установки на радиатор: с контролем температуры воздуха или теплоносителя и с различным расположением датчика в зависимости от того, производится установка открыто или в технологическую нишу.
К монтажу термоголовок предъявляется ряд простых, но обязательных правил. По большей части они касаются обеспечения правильной работы термостата: головка должна свободно обдуваться косвенной конвекцией, её не следует размещать в тупиковых зонах, под занавесками, равно как и в местах, подвергающихся сквозным воздушным потокам или стороннему нагреву, например, открытыми солнечными лучами. Естественно, если речь идёт о головках с выносным датчиком, всё вышеописанное касается непосредственно термочувствительного элемента. Оптимальным считается горизонтальное положение регулятора, таким образом, воздух беспрепятственно протекает через защитную решётку и обдувает рабочее тело, а нагрев от присоединительных трубок оказывает минимальное влияние.
Принципы работы гидросистем отопления
Любой источник обогрева нуждается в устройствах регуляции. В кондиционерах, нагревательных элементах тёплого пола и конвекторах имеется встроенный механический терморегулятор, отключающий питание прибора при достижении требуемой температурной отметки. А какие технические средства используются в радиаторных сетях гидравлических систем отопления?С одной стороны, практически любой котёл отопления имеет встроенный датчик, отслеживающий температуру теплоносителя. Однако его нельзя считать основным средством регулирования температуры воздуха, так как помещения, отапливаемые жидкостными системами, разнятся по объёму и величине теплопотерь. Таким образом, основная функция системы терморегуляции котла — не допустить перегрева теплоносителя. Кроме того, нельзя забывать о твердотопливных котлах, большинство из которых попросту не способны изменять режимы горения в зависимости от температуры рабочей жидкости.
Чтобы обеспечить комфортную температуру воздуха в обитаемых помещениях, требуется контролировать интенсивность отдачи тепла на самих регуляторах. Для этой цели предусмотрен широкий спектр запорно-регулирующей арматуры, классифицируемой как термоголовки для гидравлических систем отопления. Они отличаются по способу контроля и внутреннему устройству, при этом основной принцип работы понять достаточно просто.
Суть работы запорно-регулирующей арматуры
Чтобы правильно применять устройства регуляции температуры, нужно понимать, каким образом действует гидравлический радиатор. Источник тепла, которое в конечном итоге передаётся комнатной атмосфере, это теплоноситель, циркулирующий по замкнутому контуру и насыщаемый теплом при прохождении через генерационную часть системы. При попадании в радиатор теплоноситель отдаёт энергию корпусу, а он, в свою очередь, излучает его в инфракрасном спектре и также передаёт часть тепла потоку воздуха, проходящему через систему оребрения.Таким образом, можно выделить два пути, которыми ограничивается передача энергии от теплоносителя воздуху. Первый и самый распространённый — снижение протока теплоносителя в каналах радиатора. Если через радиатор протекает меньший объём рабочей жидкости, соответственно, и количество тепловой энергии, подводимой к нагревательному прибору, будет меньше. На практике это реализуется путём искусственного занижения условного прохода труб в месте подключения радиатора.
Второй способ регулировки заключается в нормировании температуры поступающего теплоносителя, что кажется более логичным, но на практике вызывает дополнительные технические сложности. Единственный способ снизить температуру теплоносителя на подаче — смешать его с частью теплоносителя обратки. Однако это невозможно осуществить при действующей разнице давлений стандартной гидравлической системы. Поэтому такой способ регулировки требует установки узла с расходно-смесительной арматурой и дополнительным циркуляционным насосом, что в действительности актуально не для отдельного радиатора, а целой группы.
Вопросы балансировки
Если радиаторная сеть построена по принципу двухтрубного подключения с возвратным движением теплоносителя, она требует балансировки. Суть последней заключается в ограничении расхода через радиаторы, расположенные наиболее близко к тепловому узлу, для того, чтобы к наиболее удалённым радиаторам нагретое рабочее тело поступало без дополнительных усилий.Для точной балансировки требуется, чтобы расход теплоносителя в каждом радиаторе оставался неизменным, что невозможно при первом из описанных способов термостатирования. Если используются термоголовки, регулирующие расход, то с некоторыми погрешностями при настройке гидравлической системы придётся попросту мириться. Нужно отметить, что при ограниченном числе радиаторов — порядка 10–12 в одном крыле, влияние изменения протока не сказывается существенно на работе системы в целом.
Однако для контуров большой протяжённости со значительным числом радиаторов такой подход не может применяться. Даже малейшее увеличение протока в нагревательных приборах ближайшей группы вызывает серьёзные сбои, поэтому в таких системах есть два альтернативных выхода из ситуации:
- Разделение радиаторной сети на несколько крыльев с установкой индивидуальных циркуляционных насосов.
- Нормирование теплоотдачи регулировкой температуры с применением расходно-смесительных узлов.
Виды термостатирующих головок и принцип их действия
Запорно-регулирующая арматура представлена на сантехническом рынке внушительным ассортиментом, при этом покупателю не всегда очевидны принципиальные отличия, ведь в целом внешний вид и общее описание устройств мало чем отличаются. Тем не менее, для таких изделий применима вполне конкретная классификация по механизму действия и типу контроля температуры.Механический терморегулятор в разрезе
Сборка регулирующей арматуры представлена непосредственно регулировочной головкой и клапаном, на который она воздействует. Термостатирующая головка может использовать температурное расширение рабочего тела, такие устройства называются полуавтоматическими. В качестве рабочего тела может использоваться жидкость, газ или твёрдое тело. Жидкостные и парафиновые термоголовки обладают наибольшим быстродействием, зато газовые характеризуются более продолжительным сроком службы в ущерб высокой скорости реакции.
Радиаторный газоконденсатный терморегулятор: 1 — успокоитель потока; 2 — разъёмное соединение; 3 — шток клапана; 4 — сильфон; 5 — корпус термоголовки; 6 — сальник; 7 — кран-букса; 8 — конус клапана; 9 — корпус клапана
Также управлять степенью нажатия на клапан может электронный блок, в таком случае мы говорим о цифровых термоголовках. Непосредственно нажатие на клапан обеспечивается сервоприводом, соответственно, для работы прибора требуется источник питания. Главное преимущество цифровой арматуры заключается в высокой эргономике: регулировка температуры происходит практически на лету, к тому же есть возможность программирования суточных режимов для установки индивидуальных температурных точек в период сна и отлучки из дома. При этом стоимость цифровых головок в 1,5–2 раза выше полуавтоматических механического действия.
Цифровая термоголовка
В зависимости от типа клапана, на котором установлена термоголовка, действуют различные типы коррекции температуры в помещении. Способ, заключающийся в ограничении протока, реализуется с помощью двухходового клапана, трёхходовой используется при исполнении схемы на расходно-смесительном узле. Практически все виды клапанов рассчитаны на установку термоголовок всех типов, по крайней мере, полная совместимость гарантируется в рамках прейскуранта одного производителя.
Сервопривод электронной термоголовки
Дополнительным отличием является размещение датчика температуры. В одних термоголовках он расположен в корпусе прибора, в других может размещаться удалённо: для цифровых терморегуляторов расстояние выноса практически не ограничено, в то время как для механических устройств удаление способствует меньшему времени отклика и потому датчик, как правило, расположен от устройства термоконтроля не далее 1–1,5 м. Дополнительно отметим, что возможность удалённого расположения температурного датчика существует для арматуры, контролирующей нагрев как воздуха, так и теплоносителя.
Особенности монтажа и настройки
В самом простом варианте термостатирующая головка устанавливается на патрубке подачи радиатора. Важно следить, чтобы стрелка на корпусе клапана соответствовала фактическому направлению движения теплоносителя. Большинство клапанов имеет удобное расположение соединений: наружная резьба на выходе для вкручивания в футорку и внутренняя на входе для удобного монтажа фитинга с накидной гайкой. При необходимости термостатирующей сборкой можно заменить верхнюю запорную арматуру радиатора, однако для этого сам клапан должен иметь выходное соединение типа «американка».Для установки в расходно-смесительный узел используют трёхходовые клапаны. Отводы основного протока при этом врезаются в магистраль подачи в соответствии с направлением движения теплоносителя, при этом вторичный отвод присоединяется к байпасной трубке, на которой установлен циркуляционный насос. Здесь могут использоваться всё те же виды термоголовок, что и для установки на радиатор: с контролем температуры воздуха или теплоносителя и с различным расположением датчика в зависимости от того, производится установка открыто или в технологическую нишу.
К монтажу термоголовок предъявляется ряд простых, но обязательных правил. По большей части они касаются обеспечения правильной работы термостата: головка должна свободно обдуваться косвенной конвекцией, её не следует размещать в тупиковых зонах, под занавесками, равно как и в местах, подвергающихся сквозным воздушным потокам или стороннему нагреву, например, открытыми солнечными лучами. Естественно, если речь идёт о головках с выносным датчиком, всё вышеописанное касается непосредственно термочувствительного элемента. Оптимальным считается горизонтальное положение регулятора, таким образом, воздух беспрепятственно протекает через защитную решётку и обдувает рабочее тело, а нагрев от присоединительных трубок оказывает минимальное влияние.